Hypothetical protein CT398 (CdsZ) interacts with σ(54) (RpoN)-holoenzyme and the type III secretion export apparatus in Chlamydia trachomatis.
نویسندگان
چکیده
A significant challenge to bacteriology is the relatively large proportion of proteins that lack sufficient sequence similarity to support functional annotation (i.e. hypothetical proteins). The aim of this study was to apply protein structural homology to gain insights into a candidate protein of unknown function (CT398) within the medically important, obligate intracellular bacterium Chlamydia trachomatis. C. trachomatis is a major human pathogen responsible for numerous infections throughout the world that can lead to blindness and infertility. A 2.12 Å crystal structure of hypothetical protein CT398 was determined that was comprised of N-terminal coiled-coil and C-terminal Zn-ribbon domains. The structure of CT398 displayed a high degree of structural similarity to FlgZ (Flagellar-associated zinc-ribbon domain protein) from Helicobacter pylori. This observation directed analyses of candidate protein partners of CT398, revealing interactions with two paralogous type III secretion system (T3SS) ATPase-regulators (CdsL and FliH) and the alternative sigma factor RpoN (σ(54) ). Furthermore, genetic introduction of a conditional expression, affinity-tagged construct into C. trachomatis enabled the purification of a CT398-RpoN-holoenzyme complex, suggesting a potential role for CT398 in modulating transcriptional activity during infection. The interactions reported here, in tandem with previous FlgZ studies in H. pylori, indicate that CT398 functions as a regulator of several key areas of chlamydial biology throughout the developmental cycle. Accordingly, we propose that CT398 be named CdsZ (Contact-dependent secretion-associated zinc-ribbon domain protein).
منابع مشابه
Requirement of the flagellar protein export apparatus component FliO for optimal expression of flagellar genes in Helicobacter pylori.
Flagellar biogenesis in Helicobacter pylori involves the coordinated expression of flagellar genes with assembly of the flagellum. The H. pylori flagellar genes are organized into three regulons based on the sigma factor needed for their transcription (RpoD [σ(80)], RpoN [σ(54)], or FliA [σ(28)]). Transcription of RpoN-dependent genes is activated by a two-component system consisting of the sen...
متن کاملBasal Body Structures Differentially Affect Transcription of RpoN- and FliA-Dependent Flagellar Genes in Helicobacter pylori.
UNLABELLED Flagellar biogenesis in Helicobacter pylori is regulated by a transcriptional hierarchy governed by three sigma factors, RpoD (σ(80)), RpoN (σ(54)), and FliA (σ(28)), that temporally coordinates gene expression with the assembly of the flagellum. Previous studies showed that loss of flagellar protein export apparatus components inhibits transcription of flagellar genes. The FlgS/FlgR...
متن کاملConserved type III secretion system exerts important roles in Chlamydia trachomatis.
Upon infection, Chlamydiae alter host cellular functions in a variety of ways. Chlamydial infection prevents host cell apoptosis, induces re-organization of the actin cytoskeleton and alters host cellular signaling mechanisms. Chlamydia is among the many pathogenic Gram-negative bacteria that employ the type III secretion system (T3SS) to overcome host defenses and exploit available resources. ...
متن کاملIdentification of Chlamydia trachomatis CT621, a protein delivered through the type III secretion system to the host cell cytoplasm and nucleus
Chlamydiae are obligate intracellular bacteria, developing inside host cells within chlamydial inclusions. From these inclusions, the chlamydiae secrete proteins into the host cell cytoplasm. A pathway through which secreted proteins can be delivered is the type III secretion system (T3SS). The T3SS is common to several gram-negative bacteria and the secreted proteins serve a variety of functio...
متن کاملThe Chlamydia trachomatis type III secretion substrates CT142, CT143, and CT144 are secreted into the lumen of the inclusion
Chlamydia trachomatis is a human bacterial pathogen causing ocular and genital infections. It multiplies exclusively within an intracellular membrane-bound vacuole, the inclusion, and uses a type III secretion system to manipulate host cells by injecting them with bacterially-encoded effector proteins. In this work, we characterized the expression and subcellular localization in infected host c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Protein science : a publication of the Protein Society
دوره 24 10 شماره
صفحات -
تاریخ انتشار 2015